
FREE AND OPEN SOURCE SOFTWARE 

AND THE TWIN TRAGEDIES

Ananth Padmanabhan†

Who can afford to do professional work for nothing? What hobbyist 

can put 3-man years into programming, finding all bugs, document-

ing his product and distribute for free? The fact is, no one besides us 

has invested a lot of money in hobby software . . . there is very little 

incentive to make this software available to hobbyists. Most directly, 

the thing you do is theft . . . Nothing would please me more than 

being able to hire ten programmers and deluge the hobby market with 

good software.

—Bill Gates’ open letter in 1976 to 

the homebrew Computer Club1

I. INTRODUCTION

The past decade has seen the rise and rise of free and open source software 

(FoSS) as it has made considerable inroads into Government, healthcare, 

media, automotive, energy, finance, aerospace, retail and several other sec-

tors.2 There are studies that reveal exponential expansion of the total amount 

of source code as well as the total number of open source projects over a 

period of more than ten years.3 FoSS is arguably preferred as server soft-

ware, operating systems embedded in products ranging from mobile phones 

to video recording devices, and scripting language for the internet, and even 

Microsoft had released two substantial blocks of code under this license 

† Fellow, Carnegie India.
1 Samir Chopra & Scott D. Dexter, Decoding Liberation: The Promise of Free and 

open Source Software 12 (2008).
2 Future of Open Source Survey, BlackduckSoftware.com, http://www.blackducksoft-

ware.com/future-of-open-source (last visited Jan. 7, 2014).
3 Amit Deshpande & Dirk Riehle, The Total Growth of Open Source, in open Source 

Development, Communities and Quality 197, 197 (Barbara Russo et al. eds., 2008).



174 The INDIAN JoURNAL oF LAW AND TeChNoLoGy Vol. 12

in 2009.4 All of this compels us to question Mr. Gates and ask whether he 

went terribly wrong with the grim assessment of “rational” coder behavior 

made way back in 1976? As a necessary corollary, what does the success of 

FoSS teach us, and how best can these teachings help us craft sound legal 

and economic policies that foster innovation in the world of technology? 

This paper attempts to understand the incentive structures, the hierarchical 

organisation, and the shared norms, all of which have certainly contributed 

to the growth of FoSS to where it stands today.

At the same time, this paper is no roving enquiry into the FoSS move-

ment. There is a conceptual anchor to this study, that being the twin trage-

dies in property theory – the jurist’s dream, the policy maker’s nightmare. 

The first is the tragedy of the commons, and the second, its mirror image, 

the anti-commons. They make it important for property regimes to walk the 

tightrope between two extremes: i) too many beneficiaries and no effective 

bearers of rights, and ii) too many rights holders and diminished benefits 

over time. Because they find their origins in real property, some recalibra-

tion is required before applying them to the world of ideas and innovation. 

This paper does that, and then enquires whether: i) the FoSS model/s of 

innovation manage to successfully walk this tightrope and balance several 

competing interests and concerns, and ii) if it does, whether similar mod-

els can be developed by businesses to foster innovation in other realms of 

technology, and should be encouraged by lawmakers including by way of 

reform to the intellectual property laws as we have traditionally used and 

understood them. Academic literature that equates the FoSS model to a 

“commons” of ideas abound, but as discussed in Part II, a large part of 

such literature ignores, or deals cursorily with, why the FoSS commons has 

stayed clear of hardin’s tragedy.5 This paper attempts to provide an expla-

nation, largely highlighting the oversight of theorists who ignore nuances 

of the FoSS model when conveniently equating it with a plain “commons”. 

The deeper contribution of this paper is however in the realm of the anti-

commons. After recalibrating the scope of this tragedy in the intellectual 

property space, this paper argues in Part III that the FoSS model is a larger 

success when it comes to averting an anticommons tragedy than in creat-

ing a plain “commons”. This success, not unexplored in much detail in the 

existing literature, can potentially mould the foundation for applying the 

open source model as a more general template while crafting policy in the 

intellectual property space.

4 Josh Lerner & Mark Schankerman, Comingled Code: open Source and economic 
Development 1-2 (2010).

5 Garrett hardin, The Tragedy of the Commons, 162 (3859) Science 1243, (1968).



[2016] FRee AND oPeN SoURCe SoFTWARe AND The TWIN TRAGeDIeS 175

Part I of this paper surveys the FoSS movement from its early days to 

the present, including its fundamental philosophy and on-the-ground exe-

cution of such philosophy, its growth in size and scale, and the nuances 

in the ideological postures of its advocates. This part also looks into the 

different factors that have contributed to the growth of FoSS, such as the 

motivations of coders to be part of a “free” creative endeavor, the relatively 

flexible hierarchical structures that give considerable space for “free play”, 

and the shared values that integrate coders completely into the movement 

thus nurturing new creative activity from time to time. Part II switches gears 

to property theory, focusing on the tragedy of the commons. After outlin-

ing the contours of this concept as initially developed in the context of real 

property, I proceed to gauge its possibility in the intangible property space. 

Then, I go on to explore reasons as to why this tragedy has not apparently 

occurred in the FoSS experience and whether such apparent non-occurrence 

should embolden us to discount the role of intellectual property rights in 

incentivizing innovation. I present an alternate vision of the FoSS model, 

one where both proprietary and FoSS models have in fact been instrumen-

tal to a considerable extent in averting a “theft economy” in the software 

world and thus preventing the occurrence of this tragedy. Part III proceeds 

to examine the “anticommons” tragedy, recalibrates it in the context of 

intangible intellectual property, and builds a case for my conclusion that the 

FoSS model has been effective in averting a serious anticommons tragedy in 

the software sector – an effect that has not been given its due recognition. 

A short conclusion follows in Part IV, where I discuss, in brief, the lessons 

for copyright and patent policy from this success of the FoSS movement in 

averting an anticommons problem.

II. THE LAND OF THE “FREE”

The one revolutionary idea in FoSS which can be considered the acorn 

for the oak tree is the decision to provide end users with the source code. 

everything else, including the flexibility in fixing bugs and cleaning up or 

even quickly replacing flawed versions, the motivation of several young cod-

ers to write software and contribute to the “movement”, the more demo-

cratic and less rigid structures of hierarchy in open source software project, 

and the comfort that industries today have in using open source software, 

can be perceived as direct or indirect consequences of this decision. In sharp 

contrast, proprietary software only allows the end user a limited license to 

use the software, with no access to the source code. The source code is pro-

tected as a trade secret, and redistribution of the software is impermissible 



176 The INDIAN JoURNAL oF LAW AND TeChNoLoGy Vol. 12

under copyright law. This striking difference between FoSS and proprietary 

software in their approaches to the disclosure or otherwise of the source 

code forms the fulcrum of the study here. For this reason, the story behind 

the free software movement, which is also interlinked in interesting ways 

with the history of coding and software in general, deserves brief narration.

A. (R)evolutionary Days

The electronic Discrete Variable Automatic Computer (eDVAC), designed 

and delivered for use in 1949, marked a seminal moment in the world of 

machines. The world had its first prominent “stored program” machine – 

one with which humans could interact purely through software without 

changing or rewiring the hardware to suit new functions and data.6 But 

this was simply not enough because the world required high-level program-

ming languages so that programs written in them could be automatically 

translated by compilers into machine code. There was real urgency in mov-

ing beyond “assembly languages” and batch processing. The concerns of 

innovation in this field and era were multifarious and diverse, and only 

collaborative efforts could tackle them. The Project for the Advancement 

of Coding Techniques (PACT), a collaborative venture involving IBM and 

four of its customers, worked on writing compiler software. The Society 

to help Alleviate Redundant effort (ShARe) worked in collaboration to 

write library routines that all of its members could use. These collaborative 

efforts were good for the industry too, as IBM saw increased acceptance of 

its equipment.7 The Digital equipment Corporation (DeC) expressly encour-

aged customers to participate in the ongoing development of its products 

because it simply lacked the internal resources to develop software. DeC 

went to the extent of furnishing customers with copies of its technical man-

uals. This openness and flexibility attracted universities to use its machine, 

the Programmed Data Processor (PDP), leading to a hacker culture built 

around the machine.8 Information sharing, much needed for any effective 

collaboration, became the name of the game. The world of software devel-

opment simply could not afford wastage of time spent reinventing the wheel 

due to lack of coordination.9

In 1969, UNIX came. UNIX, the first operating system to be written in 

C – a machine-independent high level programming language – tantalizingly 

promised a bridge between ‘geeks’ working on different hardware platforms. 

6 Samir Chopra & Scott D. Dexter, supra note 1, at 3-4.
7 Id. at 6.
8 Id. at 8.
9 Steven Levy, hackers 28-29 (2d ed. 2010).



[2016] FRee AND oPeN SoURCe SoFTWARe AND The TWIN TRAGeDIeS 177

AT&T, UNIX’s “owner”, could not enter computing business due to anti-

trust barriers, resulting in free licensing of UNIX along with the source 

code. UNIX was also the first operating system to include core internet 

software like the TCP/IP networking protocols. This provided substantial 

nourishment to the communication culture, fueled by e-mail and bulletin 

boards that had sprung up around the ARPANeT and its backbone PDP-

10 sites.10 The hobbyists and enthusiasts who were, around the same time, 

experimenting with hardware to lay the foundation for personal computing, 

strongly believed that software must be free and open in order to spread 

the word about the growing power of personal computing. Thus, by 1975, 

three separate hacker cultures were thriving: the ITS community at MIT, the 

UNIX/C networked crowd, and the personal computing enthusiasts located 

largely on the West Coast. In these communities, the notion of software as 

a good that could be sold, or as property that could be stolen, was alien.11

But this notion was increasingly gaining purchase in the fledgling com-

puter industry, and soon enough, the hacker space too. By the mid-1980s, 

a new criterion for hacker stardom had crept into the equation, in addition 

to elegance, innovation, and coding pyrotechnics: awesome sales figures.12 

DeC weakened the ITS community by discontinuing its PDP-10 series, and 

Symbolics, a spin-off company, depopulated it by hiring many of its hackers. 

The modern computers of this period, such as the VAX or the 68020, had 

their own operating systems, but one had to sign a non-disclosure agreement 

to procure even the executable copy, let alone the source code.13 By 1983, 

the hundreds of proprietary software licenses riding on the microproces-

sor wave had become strong enough to satisfy courts and deter potential 

infringers.14 once the antitrust barrier against AT&T had run its course, 

they started licensing UNIX on proprietary terms and stopped providing 

access to the source code even for academic purposes.15 Licensees of UNIX, 

including IBM, Sun and Microsoft, developed their versions of UNIX and 

licensed these versions only in object code form, resulting in “forking”, i.e. 

the development of many incompatible versions.16

As Richard Stallman recounts, these and other developments that tilted 

the balance heavily in favor of proprietary software models, presented him 

10 Samir Chopra & Scott D. Dexter, supra note 1, at 10.
11 Id. at 10-11.
12 Steven Levy, supra note 9, at 389.
13 Richard M. Stallman, Free Software, Free Society 7-8 (2d ed. 2010).
14 Sam Williams, Free as in Freedom 2.0: Richard Stallman’s Crusade for Free 

Software 99 (2d ed. 2010).
15 Samir Chopra & Scott D. Dexter, supra note 1, at 136-37.
16 heather J. Meeker, The open Source Alternative: Understanding Risks and 

Leveraging opportunities 5 (2008).



178 The INDIAN JoURNAL oF LAW AND TeChNoLoGy Vol. 12

with a “stark moral choice” to join the “proprietary software” club, leave 

the field of computers, or write a program that made a free community pos-

sible once again.17 It was his decision to go with the third option that led to 

the re-birth or revival of free software. In January 1984, he quit his job at 

MIT and began writing GNU software. When GNU emacs, the text edi-

tor written by Stallman as an alternative to the proprietary Gosling emacs, 

grew in popularity, other coders started getting involved with the GNU 

Project. This necessitated more funding, and the Free Software Foundation 

(FSF) was born as a consequence.18

Though the initial goal of the GNU project was to develop the com-

plete GNU operating system and then release it, the voluntary nature of the 

code-writing activity resulted in users spending unequal amounts of time on 

different components of the system. The self-allocation of activity depended 

in large measure on the popularity of each component, and the inclination 

of coders to keep perfecting existing components without writing new ones. 

While this process made these programs much more powerful, and attracted 

both funds and contributors to the GNU Project, it also delayed completion 

of a minimal working system by several years.19 By 1990, the only major 

missing component was the kernel. The GNU hurd, which was being inter-

nally developed as the kernel, failed to live up to the mark. however, at that 

point, Linus Torvalds who had developed Linux – a Unix-compatible kernel 

– made it available as free software. This led to integrating Linux with the 

GNU system and giving the world its first free and complete operating sys-

tem, GNU/Linux, in 1992.20 From that point, the free software movement 

has indeed grown in an unprecedented manner, the important reasons for 

which shall be discussed in the following sub-parts.

The above narrative, though brief, becomes important to understand the 

political economy behind the free software movement.21 The key fact that 

merits highlighting here is the comprehension that there existed a culture 

of information-sharing and collaboration in the early days of the software 

industry. “Free” was as much a norm as “proprietary” before proprietary 

took the lead at just the point in time when it was technically becoming 

more feasible to share and collaborate through an emerging internet.22 The 

existence of a parallel free culture was definitely instrumental in prompting 

17 Richard M. Stallman, supra note 13, at 9.
18 Id. at 11, 13.
19 Id. at 17.
20 Id. at 19.
21 Samir Chopra & Scott D. Dexter, supra note 1, at 1.
22 Karl Fogel, Producing open Source Software: how to run a Successful Free 

Software Project 13 (2009).



[2016] FRee AND oPeN SoURCe SoFTWARe AND The TWIN TRAGeDIeS 179

developers like Stallman to resist losing the battle to proprietary, and to try 

and work out innovation models within a free system.23 In other words, the 

battle was more about regaining free culture than creating it anew.

This distinction becomes important in Part II, when examining whether, 

and if so to what extent, the free software model can be considered a tem-

plate for commons-based production.

B. Shared Norms and Hereditary Licenses

The GNU Project may have been the vision of a few determined coders, 

but the free software movement has moved on to achieve much larger and 

grander scale and presence today. The foundation of shared norms and 

values provided early on and around which all software development was 

intended to take effect, is an important reason for this growth. Indeed, if 

Stallman or Linus Torvalds were only feeling charitable, they could have 

dedicated GNU/Linux to the public and thus given it for “free”.24 But that 

was not the concept of freedom that Stallman or FSF believed in, as revealed 

through the recursive “copyleft” mechanism that they chose instead. Theirs 

was a notion of freedom influenced by the practice of working with source 

code and the benefits this brought about to both end-user experience and 

continued innovation. The Free Software Definition, in pursuance of this 

notion, lists as integral to any “free” software, four freedoms, namely:

 (i) to run the program, for any purpose,

 (ii) to study how the program works, and to adapt it to one’s needs,

 (iii) to redistribute copies, and

 (iv) to improve the program and release such improvements to the pub-

lic.25 Without open access to the source code, the second and fourth 

freedoms cannot be meaningfully exercised. To guarantee the same 

user freedoms over improvements and derivative adaptations of the 

original code made by other users, the hereditary licensing model 

came in.

23 Richard Stallman, The GNU Operating System and the Free Software Movement, in 
open Sources: Voices from the open Source Revolution 53, 55-56 (Chris DiBona et 
al. eds., 1999). For more factual information on Stallman’s tussles with the non-disclosure 
of source code in the period prior to the launch of the GNU Project, see Sam Williams, 
supra note 14, at 1-11.

24 Tim Berners-Lee had done exactly that when he declared his protocol for the internet and 
its implementations to be in the public domain. See Christopher M. Kelty, Two Bits: 
The Cultural Significance of Free Software 103 (2008).

25 heather J. Meeker, supra note 16, at 21.



180 The INDIAN JoURNAL oF LAW AND TeChNoLoGy Vol. 12

The idea behind hereditary licensing is simple enough, and in essence 

the same as Stallman’s motivation for the GNU Project: do not to others 

what you would not like seeing done to yourself.26 The GNU General Public 

License (GPL) which fully internalizes this motto is worth a quick study. The 

preamble to this License makes it clear that the “free” in “free software” has 

only to do with “freedom” and not “price”. even when copies of a program 

are distributed for a fee by the original licensee, the objective is to ensure 

that the recipients receive or can demand the source code and do enjoy all 

the rights that the original licensee had.27 To guarantee this, GPL imposes 

a mirror-image restriction on the licensee: while the licensee has free access 

to the source code of the licensed work, any derivative work created by the 

licensee has to be distributed in source code subject to the same freedoms, 

limitations and restrictions as the licensed work. Because this is so, the sub-

sequent licensee of the derivative work will in turn have to permit further 

licensees to enjoy identical freedoms in respect of modifications made by the 

subsequent licensee, thus spreading these freedoms in a “viral” fashion.28 

The fallout of these provisions is two-fold: (i) it prevents distribution of any 

covered work, i.e. the unmodified program or a work based on the program, 

on terms inconsistent with the freedoms and restrictions in GPL, and (ii) 

it effectively prevents combining software covered under GPL with those 

covered by other licenses that impose a different set of restrictions, most 

notably proprietary software and even software covered under other, less 

free, open-source licenses.29 To overcome possible arguments of absence of 

contractual privity that subsequent licensees in the distribution chain may 

take up, the license also provides that whenever a covered work is conveyed, 

the recipient shall automatically receive a license from the original licensors, 

to run, modify and propagate that work, subject to the terms of the GPL.30 

The preamble and the terms of the license also protect against instances 

where the redistributors may obtain software patents, by making it clear 

that any such patents are to be mandatorily licensed along with the code.31 

The disclaimer of warranties in respect of the licensed work is coupled with 

an express permission to licensees to offer support or warranty protection 

for a fee, thus providing room for a business model.32

26 Richard Stallman, supra note 13, at 9.
27 Andrew M. St. Laurent, Understanding open Source and Free Software 

Licensing 36-37 (2004).
28 Sections 4 and 5 of the GPL Ver. 3, available at http://www.gnu.org/licenses/gpl.html (last 

visited Jan. 6, 2014).
29 Andrew M. St. Laurent, supra note 27, at 157.
30 Andrew M. St. Laurent, supra note 27, at 43; Section 10 of the GPL Ver. 3, supra note 

28.
31 Section 11 of the GPL Ver. 3, supra note 28.
32 Andrew M. St. Laurent, supra note 27, at 38; Section 4 of the GPL Ver. 3, supra note 28.



[2016] FRee AND oPeN SoURCe SoFTWARe AND The TWIN TRAGeDIeS 181

The GPL model does not however give out the full story. In reality, there is 

no one hacker ideology, but many such ideologies built on differing perspec-

tives on free software as an end in itself, and the hostility to or acceptance 

of commercial software and its vendors.33 These ideologies clashed in full 

public view in the mid ’90s, primarily due to Linus Torvalds’ increasing pop-

ularity among young coders who did not find commercial software repre-

hensible or unethical. Many of them, including Torvalds, grew up in a world 

of proprietary software, and contributed to free software without perceiving 

any injustice in non-free software. Therefore, they were mostly concerned 

about the technical inferiority of any program, not its licensing model.34 

This pragmatism and openness to commercial software soon found takers in 

industry as well, as best revealed by the Netscape story.35 The Netscape epi-

sode culminated in the pragmatist camp and industry supporters replacing 

“free” software with the more benign expression, “open source”.36

The diverse ideologies thriving in the “open” since the mid ’90s have in 

turn found expression in the FoSS licensing model too. The very zealous and 

openly anti-commercial FSF’s attitude is reflected in GPL.37 Similarly, the 

pragmatist philosophy is reflected in the most permissive academic licenses, 

such as the Berkeley Software Distribution (BSD) license,38 and the middle-

of-the-road ones such as the Apache License that permit original modifica-

tions by contributors to be distributed on proprietary terms.39 So, there is no 

singular standard for an open source license, only a spectrum of permissive 

licenses with differing attitudes to both free and commercial software. At 

the same time, the open Source Definition (oSD) instils fundamental values 

into the licensing model by prescribing ten essential pre-requisites that any 

license must comply with in order to qualify as an “open source” license.40 

These ten principles reflect an interesting balance between retaining the core 

values of the free/open source movement such as distribution of the source 

33 eric S. Raymond, The Cathedral and The Bazaar: Musings on Linux and open 
Source by an Accidental Revolutionary 67-68 (2d ed. 2001).

34 Sam Williams, supra note 14, at 161-62.
35 Netscape, when faced with losing market share for its Netscape Communicator, an 

internet browser directly competing with Microsoft’s Internet explorer, chose to shift 
from a proprietary to an open source model in January 1998. however, they shunned 
the GPL license due to various reasons, instead crafting the Mozilla Public License that 
attempted to tread a pragmatist middle path that would work in a “corporate” setting. See 
LAWReNCe RoSeN, oPeN SoURCe LICeNSING: SoFTWARe FReeDoM AND 
INTeLLeCTUAL PRoPeRTy LAW 141-42 (2004).

36 Sam Williams, supra note 14, at 165-68.
37 eric S. Raymond, supra note 33, at 69.
38 Id. at 70.
39 Section 4 of the Apache License, available at http://www.apache.org/licenses/LICeNSe-

2.0.html (last visited Jan. 6, 2014).
40 LAWReNCe RoSeN, supra note 35, at 4-6.



182 The INDIAN JoURNAL oF LAW AND TeChNoLoGy Vol. 12

code and unhindered re-distribution without any discrimination, and pro-

viding room for industry to come out with derivative adaptations and modi-

fications that can be licensed on proprietary terms if so desired.

The free/open source movements do not restrict their methods to protect 

and propagate core values, to licensing models. There is an equally signifi-

cant, much less visible, process of initiation to the world of free/open source 

programming that imparts the core values and beliefs of the movements to 

fresh coders. This process is important to ensure continued involvement of 

existing coders and induction of new ones. Without this process, the act of 

building on to code would come to a standstill, effectively freezing any free/

open source project that is not backed by the industry. Again, the shared 

norms will necessarily vary within projects, depending on the dominant 

beliefs of the coders who matter. Some may be radical in their outlook, 

lending that perspective to new entrants and the project as a whole. Less 

rigid views, focused more on the technical than the political, may prevail in 

other cases. Regardless, there are baseline norms, and the success of these 

norms in welcoming, and binding, participants to the project can eventually 

determine its fate. In other words, by allowing users to become co-develop-

ers or contributors, and retaining their skill sets, FoSS encourages “natural 

product evolution”. Such “natural product evolution” takes place within the 

norms of a community, the norms themselves being dependent on the nature 

of the project at hand.41 Communities evolve in the free software world 

through role transformation, as community members who change their roles 

– such as from peripheral to active developers, for instance – also manage to 

change the social dynamics and reshape the structure of the community.42

The evolution of a FoSS community is thus determined by two factors: 

(i) the social mechanism of the community that encourages and enables 

individual role transformation, and (ii) the existence of motivated members 

who aspire to play roles with larger influence.43 The motivation for members 

to so aspire, despite no monopoly rights over their creative output, is dis-

cussed under sub-part D, below. To explain the former, studies have relied 

on Legitimate Peripheral Participation (LPP), a community learning theo-

ry.44 The scope and character of such LPP varies depending on the nature of 

the project, and in some sense, is inversely proportional to the “cathedral” 

41 yunwe ye et al., The Co-Evolution of Systems & Communities in Free and Open Source 
Software Development, in Free/open Source Software Development 61 (Stefan Koch 
ed., 2005).

42 Id. at 69.
43 Id. at 70.
44 Id. at 70-71.



[2016] FRee AND oPeN SoURCe SoFTWARe AND The TWIN TRAGeDIeS 183

structure of the project.45 exploration-oriented FoSS projects, which aim to 

push the frontier of software development collectively through the sharing of 

innovations, require a high level of quality that necessarily brings in a tight 

control over the periphery. even service-oriented FoSS projects give lesser 

leeway for community evolution through peripheral participation, interested 

as they are in providing stable, reliable and robust services without much 

disruption. on the other hand, utility-oriented FoSS projects that attempt 

to develop functional solutions to existing problems follow a more decentral-

ized model. Such projects provide better opportunities to peripheral develop-

ers to spread their efforts into the whole system and establish themselves as 

active developers or core members in the larger community.46 Social ties such 

as friendship, which influence opinions and outlook in the real world, can 

also play an important role in the FoSS world to ensure coordinated activ-

ity, pursuit of core values, and attainment of technical results that meet a 

certain quality.47 Similarly, conflicts that happen on internet relay chats and 

mailing lists over use of non-free tools and acceptance of newcomers into 

the fray do contribute to building a community of practice and strengthen-

ing teamwork.48 Finally, sustained collaborative development of code, cou-

pled with involvement in hacker conferences and discussions and decisions 

around free software licenses and project policy, reinforces ethics and belief 

in core values over a period of time.49 As a result, over the course of partici-

pating in an open source project, coders develop a more vigorous and overt 

ethical stance toward the uniqueness of their project and the importance of 

free software than when first joining.50

C. Hierarchies and Creative Openness

The propagation of core values through licensing models and other means, 

as discussed above, is certainly integral to the success of the free/open source 

45 See eric S. Raymond, supra note 33, at 27-28, 31.
46 yunwe ye et al., supra note 41, at 73-75.
47 Thomas Basset, Coordination and Social Structures in an Open Source Project: VideoLAN, 

in Free/open Source Software Development, supra note 35, at 125, 129-30, 139-42. 
Contrary view has been expressed in this more recent study, Chaim Fershtman & Neil 
Gandal, Direct and Indirect Knowledge Spillovers: The Social Network of Open-Source 
Projects, 42 The RAND J. of econ. 70, 88 (2011). This study concludes that there is no 
evidence of any correlation between contributor closeness centrality and project success, 
though such evidence exists in the case of project closeness centrality.

48 Margaret S. elliott & Walt Scacchi, Free Software Development: Cooperation and Conflict 
in a Virtual Organizational Culture, in Free/open Source Software Development, 
supra note 35, at 152, 160, 162-66.

49 e. Gabriella Coleman & Benjamin hill, The Social Production of Ethics in Debian and 
Free Software Communities: Anthropological Lessons for Vocational Ethics, in Free/
open Source Software Development, supra note 35, at 273, 274.

50 Id. at 279.



184 The INDIAN JoURNAL oF LAW AND TeChNoLoGy Vol. 12

movement, but equally significant are the structures necessary to oversee 

what is, at first glance, a frenzied playground of coding activity. The bazaar 

model where “given more eyeballs, all bugs are shallow” – a less formal 

expression of Linus’s Law: Given a large enough beta-tester and co-devel-

oper base, almost every problem will be characterized quickly and the fix 

obvious to someone51 – is yet workable only when there is some form of con-

trol over the changes made by contributors to the code development process. 

otherwise, Brooks’s Law would have taken over, and adding more program-

mers to a late project would only have made it later.52 Though the conceptual 

integrity of a program, in the cathedral vision of development, can only be 

preserved by a hierarchy with a system master architect at the very top and 

sub-architects below,53 open source projects have more flexible hierarchies. 

This is needed to an extent to attract all those “eyeballs” in the first place. 

Pre-assigned division of work is likely to be perceived as repressive and 

thereby demotivate interested participants as well as hinder getting the best 

out of each person’s abilities from among a scattered resource pool.54 For 

this reason, coordination in free software privileges adaptability over plan-

ning, and relies on hierarchy only to resolve any tension between individ-

ual curiosity and collective coordination.55 Such tension, if unchecked, can 

result in failure of the project, or its “forking” or splintering into variants.56

Studies of different open source projects reveal the use of central source 

code repositories that make use of some form of a Concurrent Versions 

System (CVS) to keep track of the changes made to a set of files, and to allow 

several developers to collaborate. Version control is principally about change 

management: identifying each discrete change made to the project’s files, 

annotating with metadata including the date and author of each change, and 

providing this information to developers who seek it.57 These repositories 

guarantee that each file change – called a commit or a “check in” – cre-

ates a new file version, thus keeping previous versions accessible as well.58 

51 eric S. Raymond, supra note 33, at 30.
52 Frederick P. Brooks, The Mythical Man-Month: essays on Software engineering 

25 (2d ed. 1995). Interestingly, even this 20th Anniversary edition of this pioneering work 
makes no reference to free or open source models of software development.

53 Id. at 257.
54 Johan Soderberg, hacking Capitalism: The Free and open Source Software 

Movement 156-57 (2008).
55 Christopher M. Kelty, supra note 24, at 211.
56 Josh Lerner & Jean Tirole, Economic Perspectives on Open Source, in Perspectives on 

Free and open Source Software 47, 53 (Joseph Feller et al. eds., 2005).
57 Karl Fogel, supra note 22, at 48; Audris Mockus et al., Two Case Studies of Open 

Source Software Development: Apache and Mozilla, in Perspectives on Free and open 
Source Software, supra note 56, at 163, 167.

58 Jesper holck & Niels Jorgensen, Do Not Check in on Red: Control Meets Anarchy in Two 
Open Source Projects, in Free/open Source Software Development, supra note 35, 



[2016] FRee AND oPeN SoURCe SoFTWARe AND The TWIN TRAGeDIeS 185

Because debugging is a vital process required for a program to transition 

to a programming product or a component in a programming system,59 the 

technical infrastructure also necessarily includes a bug-tracking system. 

These centralized defect-tracking systems register information reports on 

bugs provided by any developer, and facilitate the committal of changes to 

the repository to address specific bugs.60 Difficulties in the effective sharing 

of information form the rationale for Brooks’s Law, which frowns upon the 

involvement of too many coders in a software development process. The Law 

especially relies on the sequential nature of debugging, which requires addi-

tional time to be spent on communication between the different coders.61 

To mitigate this concern, open source systems, in addition to the centralized 

bug-tracking system, make use of mailing lists, newsgroups and real-time 

chat systems, to channel the flow of communication and to bring everyone 

on to the same page without much delay.62

While all developers are allowed to download files from the reposito-

ries and work on them, only “committers”, a chosen group of developers 

with special privileges, are allowed to commit changes to files in the repos-

itories. Developers have to usually demonstrate their competence through 

high-quality contributions for a certain period, before they are considered 

for committer status. This decision may also require affirmance from more 

senior committers and supervisors. even after being conferred committer 

status, certain open source projects provide mentorship avenues to newly 

anointed committers.63 open source projects such as GNoMe, where dif-

ferent corporate partners pay their own employees to participate in code 

development, maintain a rigid distinction between volunteers who can con-

tribute to different modules, and “contributors” who can actually commit 

these changes to the repository. In such cases, volunteers have to submit their 

patches for review and committal by these “contributors”, who alone have 

access to the CVS.64

however, there are open source projects that follow more relaxed rules 

when it comes to committing changes to the repository, relying on more of an 

honor system. here, developers are permitted to commit changes anywhere 

in the system but requested to confine their changes to certain specifically 

at 1, 5-7.
59 Frederick P. Brooks, supra note 52, at 4-6.
60 Jesper holck & Niels Jorgensen, supra note 58, at 7-8; Audris Mockus et al., supra note 

57, at 168.
61 Frederick P. Brooks, supra note 52, at 16-19.
62 Jesper holck & Niels Jorgensen, supra note 58, at 9-10.
63 Id. at 13-14.
64 Daniel M. German, Software Engineering Practices in the GNOME Project, in 

Perspectives on Free and open Source Software, supra note 55, at 211, 214-15.



186 The INDIAN JoURNAL oF LAW AND TeChNoLoGy Vol. 12

assigned portions. There are advantages to this relaxed approach too, such 

as saving on administrative overheads entailed in granting wider privileges 

when coders expand their skill sets, and more importantly, encouraging an 

atmosphere of trust and mutual respect.65 Some open source projects also 

have ‘super-reviewers’ who review most code before it is committed,66 and 

module owners who need to approve the committing of code into the particu-

lar module whose development is within their supervision.67 In some cases, 

there will be different middle level managers to supervise important tasks: 

patch managers who make sure that every patch is followed up through to 

some stable state,68 translation managers who supervise the translation of 

the software’s documentation or the software interface itself into languages 

comfortable for developers from different nationalities,69 documentation 

managers who ensure that the software documentation is kept organized, 

up-to-date, and consistent with itself,70 issue managers who familiarize 

themselves with the bug tracking system and manage the tackling of dupli-

cate, incomplete, poorly described and unaddressed issues / bug reports,71 

and Frequently Asked Questions (FAQ) managers who maintain the overall 

quality of FAQ and write new FAQ entries based on concerns raised in the 

mailing lists and other communicative media.72

Most successful open source projects will have significant number of peo-

ple involved with the code-writing process, necessitating the presence of a 

top-level management to avoid “forking”, to take important decisions such 

as the timing of new version releases, and quite simply to ensure the oper-

ational health and survivability of a project.73 The concept of a benevolent 

dictator is not alien to the open source model. These individuals command 

respect among peers through good coding skills coupled with charm and an 

engaging persona that set them up for natural leadership. Their influence 

65 Karl Fogel, supra note 22, at 56; See also Audris Mockus et al., supra note 57, at 171-72. 
A recent study indicates that the involvement of peripheral developers becomes significant 
once the project matures, though contributions by a core group would be more dominant 
in the initial stages of code-writing. By adopting a rigid hierarchy, open source projects 
would expose themselves to the risk of losing out on this involvement. See Pankaj Setia et 
al., How Peripheral Developers Contribute to Open-Source Software Development, 23 
Information Sys. Research 144, 155 (2012).

66 Audris Mockus et al., supra note 57, at 191-2.
67 Jesper holck & Niels Jorgensen, supra note 58, at 13-14; Daniel M. German, supra note 64, 

at 215; See also Alessandro Narduzzo & Alessandro Rossi, The Role of Modularity in Free/
Open Source Software Development, in Free/open Source Software Development, 
supra note 35, at 84.

68 Karl Fogel, supra note 22, at 148.
69 Id. at 149.
70 Id. at 150.
71 Id. at 151; Audris Mockus et al., supra note 57, at 173.
72 Id. at 152.
73 Id. at 67.



[2016] FRee AND oPeN SoURCe SoFTWARe AND The TWIN TRAGeDIeS 187

is generally felt only as a kind of casting vote when the normal processes 

of discussion and deliberation fail to throw up a conclusive verdict.74 As 

projects get older, they tend to move away from the benevolent dictatorship 

model and toward more openly democratic systems.75 Many significant open 

source projects are headed by groups or core teams comparable to the board 

of directors in traditional organizations.76 These groups are either nomi-

nated or democratically elected.77

There are complexities with the release of new versions of free / open 

source software that do not exist in the case of proprietary software. They 

arise because development is an ongoing process in open source. Not all 

developers may be satisfied with the existing “version”, or be inclined to 

“stabilize” their creative efforts.78 This is also a positive feature when viewed 

from a technical standpoint as the attempt to achieve perfection is not ren-

dered immobile at any particular stage due to the release of a version. At 

the same time, users do not need to wait endlessly for the end product to 

achieve perfection to the satisfaction of all developers.79 open source pro-

jects manage to achieve this by following a trunk and branches model, where 

the trunk is the code that keeps evolving and the branches are the release 

versions.80 This is easier said than done though because considerable amount 

of planning and decision-making goes into the timelines for release of the 

alpha, beta and final versions of any particular “branch”.81 Moreover, it is 

necessary to decide on, and communicate in a tactful manner, restrictions 

on changes to the development branch in a phased manner, to achieve the 

final release version without confusion or compromise of the overall devel-

opment momentum.82 To realize these needs, open source projects resort 

to a system of positive and express voting in favor of last-minute changes, 

or rely on a release owner who is responsible for approving or rejecting 

changes and bug fixes.83 Release managers keep a track of the changes that 

are under consideration, already approved, or important and yet unnoticed, 

and prompt other developers to take timely action.84 Companies that dis-

tribute open source products for revenue also necessarily require a team that 

74 Id. at 68.
75 Id. at 69.
76 Daniel M. German, supra note 64, at 219.
77 Jesper holck & Niels Jorgensen, supra note 58, at 12.
78 Niels Jorgensen, Incremental and Decentralized Integration in FreeBSD, in Perspectives 

on Free and open Source Software, supra note 56, at 227, 241-42.
79 Karl Fogel, supra note 22, at 118.
80 Niels Jorgensen, supra note 77, at 242.
81 Jesper holck & Niels Jorgensen, supra note 58, at 15-17.
82 Karl Fogel, supra note 22, at 123, 125.
83 Id. at 125-26.
84 Id. at 127. Audris Mockus et al., supra note 57, at 175.



188 The INDIAN JoURNAL oF LAW AND TeChNoLoGy Vol. 12

carries out economic calculations to decide on the extent of efforts that a 

new distribution calls for.85

D. Motivations, Extrinsic and Intrinsic

The success of any free / open source project, and the FoSS movement as 

a whole, is closely tied with the motivations of coders who are willing to 

devote time to a “free” endeavor. A generalized explanation offered for this 

phenomenon is that innovators innovate, regardless of monopolies, because 

the return to them from deploying new ideas is high. Free markets have 

never historically guaranteed a market to any merchant, yet innovation con-

tinues.86 While this view may hold good in certain cases, and open source 

model could well be one such, not all capital investment in developing 

new ideas and executing them can survive absent special legal protection. 

otherwise, any one purchaser could easily destroy the monopoly by repro-

ducing the information at little or no cost.87 Moreover, most of code-writing 

in open source projects is incremental, with no real opportunity for many 

of the individual contributors to monetize the code. They incur an oppor-

tunity cost of time, foregoing monetary compensation that could otherwise 

be earned by working for a commercial firm or a university.88 however, 

these costs can be offset by the pleasure that coders get out of the aesthet-

ics of writing beautiful code,89 ego gratification from peer recognition, or 

even tangible benefits such as future or better job prospects, and shares in 

open-source based companies.90 The complex interplay of these compet-

ing considerations of costs and benefits deserves closer scrutiny and deeper 

understanding, especially for the purposes of the analysis that follows in 

Part III of this paper.

Broadly, the motivation to involve in an open source project can be either 

intrinsic, such as the joy arising from partaking in the intellectual challenges 

85 Jesus M. Gonzalez-Barahona et al., Analyzing the Anatomy of GNU/Linux Distributions: 
Methodology and Case Studies, in Free/open Source Software Development, supra 
note 35, at 27, 31.

86 Lawrence Lessig, The Future of Ideas: The Fate of the Commons in a Connected 
World 71 (2001).

87 Kenneth J. Arrow, Economic Welfare and Allocation of Resources for Invention, in The 
Rate and Direction of Inventive Activity: economic and Social Factors 609, 
615 (1962); Josh Lerner & Mark Schankerman, supra note 4, at 25.

88 Josh Lerner & Jean Tirole, The Economics of Technology Sharing: Open Source and 
Beyond 7 (Nat’l Bureau of econ. Research, Working Paper No. 10956, 2004).

89 Samir Chopra & Scott D. Dexter, supra note 1, at 71.
90 Josh Lerner & Jean Tirole, supra note 88, at 8.



[2016] FRee AND oPeN SoURCe SoFTWARe AND The TWIN TRAGeDIeS 189

of code-writing, or extrinsic, such as better jobs and career advancement.91 

Intrinsic motivation can again be separated into two components, subject to 

the obvious disclaimer that these components are not mutually exclusive and 

can inhere alongside each other in the same individual. For that matter, even 

intrinsic and extrinsic motivations can act in tandem to motivate a coder. 

These dual components of intrinsic motivation are enjoyment-based intrin-

sic motivation, and obligation/community-based intrinsic motivation.92 To 

understand intrinsic motivation of the first kind, appreciation of the aesthet-

ics of code-writing is essential. In this regard, parallels can be seen between 

descriptions of FoSS development that emphasize its spontaneous, unorgan-

ized or even chaotic qualities, and traditions in art criticism that praise the 

spontaneity of the creation.93 By participating in the FoSS development pro-

cess, coders place their work up for criticism by an audience of peers spread 

all across the world, in much the same way as artists expose the output of 

their creative endeavor.94 While users are ultimately concerned only about 

the functionality of code, programmers have a notion of its beauty. Much as 

an artist extracts form from objects of experience and imposes that on can-

vas, the programmer imposes the form of an abstract algorithm in, and on, a 

particular programming language.95 Similarly, the literary character of code 

introduces the possibility of a neat and clean style of writing it, thus adding 

a new layer or dimension of beauty. Unsurprisingly, the work of a veteran 

would be distinguishable from that of a novice.96 Apart from the aesthetic 

quality of the output, the creative “flow” in the process of writing code 

and the inner joy in accomplishing a task involving intellectual challenge 

contribute to enjoyment-based intrinsic motivation.97 obligation/communi-

ty-based intrinsic motivation is not different from the shared norms and 

values that form the foundation of the free/open source movement,98 which 

have already been discussed in sub-part B above.

The most obvious extrinsic motivation is closely tied with the technical 

merits of the open source model, which have achieved high levels of public 

awareness in the past decade. Along with this success has come significant 

corporate presence and participation in this model, and the earmarking, 

by technology bellwethers, of specific portions in their budget for open 

91 Karim R. Lakhani & Robert G. Wolf, Why Hackers Do What They Do: Understanding 
Motivation and Effort in Free/Open Source Software Projects, in Perspectives on Free 
and open Source Software, supra note 56, at 3.

92 Id. at 4.
93 Samir Chopra & Scott D. Dexter, supra note 1, at 74.
94 Id.
95 Id. at 77.
96 Id. at 78.
97 Karim R. Lakhani & Robert G. Wolf, supra note 91, at 4-5.
98 Id. at 5-6.



190 The INDIAN JoURNAL oF LAW AND TeChNoLoGy Vol. 12

source contribution.99 The reasons for enhanced corporate presence include 

improvement of employee skills through peer-driven training; possibility 

of utilizing some of the tools used for developing the open source code to 

address in-house technical concerns; gathering “competitive intelligence” 

about a competing open source project; gaining superior knowledge and 

understanding of the code as part of a business model that provides goods 

and services complementary to the open source product; and even better 

public relations.100 Because of these reasons, firms that specialize in custom-

ized software and software that can be bundled with hardware are more 

likely to receive corporate funding than those with a focus on packaged open 

source software and support services.101 Again, the flexibility offered by the 

open source license to create copyrightable derivative versions and modifi-

cations has an impact on funding prospects. Projects operating under BSD 

open source licenses are more than twice as likely to receive corporate fund-

ing as those operating under the more restrictive GPL or other licenses.102 

Apart from firm sponsorship which is a strong extrinsic motivation, coders 

also contribute because of delayed benefits such as career advancement and 

improvement of programming skills in course of time.103 Another important 

signaling incentive is the ego gratification through peer recognition, which is 

more likely to materialize in the open source model than in the commercial 

software model of development.104

There are studies and theories which attribute greater significance 

to extrinsic105 as well as intrinsic106 motivations, and it is difficult, if not 

99 Josh Lerner & Mark Schankerman, supra note 4, at 48-50, 91-92. Some of the varied 
ways in which corporates contribute to open source development are by (i) formally or 
informally encouraging employees to spend some time contributing to open source pro-
jects, (ii) directly providing complementary services and products that are not supplied 
efficiently by the open source community, and (iii) permitting open source projects to make 
use of their proprietary code to achieve better technical results.

100 Id. at 49-51, 91; Karl Fogel, supra note 22, at 76; Lawrence Lessig, supra note 86, at 
69-70.

101 Id. at 93.
102 Id.
103 Karim R. Lakhani & Robert G. Wolf, supra note 91, at 7.
104 Josh Lerner & Jean Tirole, Some Simple Economics of Open Source, 50 J. of Ind. econ. 

197, 216 (2002). The primary reason for better prospects of peer recognition is due to the 
technical architecture of an open source project, where everyone can see for themselves 
and evaluate the contribution made by each developer. Because the programmer is acting 
independent of directions from the top, unlike in the case of a proprietary model, there is 
better performance attribution too.

105 Id. at 217-220; Alexander hars & Shaosong ou, Working for Free? Motivations for 
Participating in Open-Source Projects, 6 Int’l. J. econ. Comm. 25, 34-35.

106 yochai Benkler, The Wealth of Networks 60, 100 (2006); Karim R. Lakhani & 
Robert G. Wolf, supra note 91, at 7; Chong Ju Choi et al., Global Ethics of Collective 
Internet Governance: Intrinsic Motivation and Open Source Software, 90 J. Bus. ethics 
523, 524 (2009).



[2016] FRee AND oPeN SoURCe SoFTWARe AND The TWIN TRAGeDIeS 191

impossible, to conclude on this issue. Most studies rely on surveys conducted 

among developers, and have severe limitations, including the absence of 

consciousness of motives, or their deliberate or unintended suppression, on 

the part of developers.107 A recent study, keeping these limitations in mind, 

attempts to study developer motivations by analyzing the actual contribu-

tions of developer groups rather than their stated intent.108 The central find-

ing of this study is that developers stand enticed by notable project features 

such as the openness of the license, project size, and corporate sponsor-

ship. This is consistent with economic theory that suggests higher long-term 

incentives under conditions of greater visibility of performance to the rele-

vant audience, higher impact of individual effort on the final outcome, and 

grander information about one’s talents that the performance is structured 

to give out.109 empirical patterns from this study also reveal a greater role for 

intrinsic factors and reputational factors, and lesser role for other extrinsic 

factors such as the expectation of reciprocal contributions from users, in 

motivating contribution from volunteers.110 The only reasonable position to 

take, based on these studies and theories, is that the motivations for coders 

are as varied and diverse111 as it was for a Richard Stallman, on the one 

hand, and a Linus Torvalds, on the other,112 to come together to develop 

GNU/Linux. At the same time, open source projects have to carefully bal-

ance intrinsic and extrinsic motivations, particularly when there is corporate 

involvement. Corporate sponsors may naturally expect, and assert, more 

influence and say in the development process, and this in turn can give rise 

to an apprehension of control, especially in the minds of peripheral develop-

ers. This is a recipe for disaster, as it can lead to splintering of the developer 

community and the “out-group” developers switching their attention to pro-

jects that are perceived as more meritocratic and less susceptible to monetary 

influences.113 Peripheral developers have key roles to play both in product 

107 Rishab Aiyer Ghosh, Understanding Free Software Developers: Findings from the FLOSS 
Study, in Perspectives on Free and open Source Software, supra note 56, at 23, 39.

108 Sharon Belenzon & Mark Schankerman, Motivation and Sorting in Open Source Software 
Innovation, (unpublished manuscript, Nov 2012), available online at https://faculty.fuqua.
duke.edu/~sb135/bio/Belenzon%20Schankerman%20oSS%20July%202012.pdf (last vis-
ited Jan. 10, 2014).

109 Josh Lerner & Jean Tirole, supra note 88, at 8.
110 Sharon Belenzon & Mark Schankerman, supra note 108, at 32-33.
111 Fadi P. Deek & James A.M. Mchugh, oPen Source: Technology and Policy 164-

66 (2007); Ron Goldman & Richard P. Gabriel, Innovation happens elsewhere: 
open Source as a Business Strategy 72 (2005).

112 David M. Berry, Copy, Rip, Burn: The Politics of Copyleft and open Source 116 
(2008). Torvalds came to know of the free software movement because he was part of the 
student audience addressed by Stallman in Finland. he later recalled that although the 
political and ethical call to arms did not really inspire him, he saw the underlying technical 
logic: no programmer can write error-free code all by himself.

113 Karl Fogel, supra note 22, at 75.



192 The INDIAN JoURNAL oF LAW AND TeChNoLoGy Vol. 12

diffusion through awareness, and enhancement of product quality mainly in 

the mature stages of code development.114 It would be unwise to jeopardize 

this contribution by sending out the visual of a monolithic corporate pres-

ence,115 by swamping the field with too many extrinsic incentives that end up 

“crowding-out” initially dominant intrinsic motivations,116 or by festering 

coordination failures that studies have shown to exist between corporate 

and voluntary developers.117

III. THE FOSS MODEL – A COMMONS SANS THE TRAGEDY?

A. The Tragedy of the Commons

The aim in Part I was to provide a landscape of the FoSS model(s), and 

some of the structural and philosophical reasons for their viable and stable 

growth. The sharing of source code, all important in most FoSS licenses, 

has certainly given coders a common pool of creative ideas and expression 

from which they stand to benefit. It is tempting therefore to visualize FoSS 

as a “commons”118 – a virtual community of like-minded individuals who 

band together to create and share common public goods deemed important 

to the community.119 In the specific context of FoSS, they are highly skilled 

individuals who have remarkable technical ability, are often young, keen to 

impress with their problem-solving approach, drawing directly on notions of 

meritocracy, and generally, believers in the project of science and rationali-

ty.120 But apart from this, their division across the lines of “free” vs. “open 

source” models is not split into binary but set along a continuum of beliefs 

including one of absolute indifference to the differing ideologies.121

114 Pankaj Setia et al., supra note 65, at 157-59.
115 Karl Fogel, supra note 22, at 78.
116 Stephan Meier, A Survey of Economic Theories and Field Evidence on Pro-Social 

Behavior, in economics and Psychology: A Promising New Cross-Disciplinary 
Field 51, 67-68 (Bruno S. Frey & Alois Stutzer eds., 2007).

117 Jan eilhard & yann Meniere, A Look Inside the Forge: Developer Productivity and 
Spillovers in Open Source Projects 1, 24 (Working Paper, 2009), available at http://papers.
ssrn.com/sol3/papers.cfm?abstract id=1316772.

118 Lawrence Lessig, Code and other Laws of Cyberspace 104-08 (1999); Lawrence 
Lessig, supra note 86, at 55-72.

119 Charlotte hess & elinor ostrom, Ideas, Artifacts, and Facilities: Information as a 
Common-Pool Resource, 66-SPG Law & Contemp. Probs. 111, 120-121 (2003); Allen 
K. yu, Enhancing Legal Aid Access Through An Open Source Commons Model, 20 harv. 
J.L. & Tech. 373, 374-75, 378-79 (2007).

120 David M. Berry, supra note 112, at 138.
121 Id. at 141-42.



[2016] FRee AND oPeN SoURCe SoFTWARe AND The TWIN TRAGeDIeS 193

The extension of this imagination of a “commons” is a world of “com-

mons-based” peer production that relies on human cooperation rather than 

candies or the cane to replenish the commons.122 In an approach that seriously 

questions the “rational-actor” model, FoSS is used as an example of selfless 

cooperation even where there are strong commercial benefits to acting in a 

self-interested direction. In other words, coders are contributing time and 

effort for free because it enhances their sense of identity and community and 

because the activity itself is fun. And even more surprisingly, they continue 

to voluntarily contribute despite other contributors getting paid, without 

feeling crowded-out.123 The policy prescriptions that follow from this belief 

in human capacity and motivation for selfless action (or at least action less 

guided by extrinsic than by intrinsic factors) – well exemplified by the FoSS 

success story – varies according to the nature and strength of such belief, 

and the conditions under which the believers consider this “unusual” human 

behaviour to take wings. Thus, they cover the entire gamut ranging from 

using licenses as a tool to influence a recursive public to continue doing the 

“right” thing,124 reducing copyright term for software to a five year period 

that is renewable by another five years, with mandatory access to the source 

code once the term expires,125 granting tax benefits to donors of intellectual 

property who add to the creative commons,126 ensuring that both technolog-

ical protection measures and private contracting do not exceed the reach of 

copyright law itself,127 permitting reproduction for noncommercial purposes 

and recasting copyright as an exclusive right of commercial exploitation,128 

suitably redesigning laws to reflect the shift from a pure incentive-based 

approach to one guided equally by intrinsic motivations,129 and at the very 

least, refraining from policy measures such as expansionism of intellectual 

property rights, which foreclose the possibility of a commons built on intrin-

sic motivation.130

But it is precisely when scouting sound policy prescriptions that we are 

also compelled to look to the tragedy of the commons as a cautionary tale. 

The case for such a tragedy was convincingly put forth for the first time 

122 yochai Benkler, The Penguin and the Leviathan: how Cooperation Triumphs 
over Self-Interest 1 (2011).

123 Id. at 169, 178-80.
124 Christopher M. Kelty, supra note 24, at 299-300.
125 Lawrence Lessig, supra note 86, at 253.
126 Id. at 254.
127 Id. at 256-57.
128 Jessica Litman, Digital Copyright 180 (2001).
129 yochai Benkler, supra note 122, at 241.
130 James Boyle, The Second Enclosure Movement And The Construction Of The Public 

Domain, 66-SPG Law & Contemp. Probs. 33, 48-49 (2003).



194 The INDIAN JoURNAL oF LAW AND TeChNoLoGy Vol. 12

in 1968,131 in an article dealing with population explosion whose zone of 

intellectual influence has expanded well beyond this seemingly narrow, yet 

important, concern. The imagery used was a pasture open to all, which for 

years did not face excessive utilization because the herdsmen and cattle reli-

ant on it never went above the carrying capacity of the land due to high mor-

tality rates. At a certain point in time, population stabilizes. Now, those free 

to exploit the pasture numerically exceed its carrying capacity, giving rise 

to the tragedy. every herdsman, being a rational actor, looks to expand his 

herd because the benefits of such expansion are individualized but the costs 

are collectively borne by all herdsmen who use the pasture. In the absence of 

any restrictions that place the cost of using the pasture at the doorstep of the 

herdsman who expands his herd, all of them hurtle to ruin.132 This scenario, 

where use of the pasture is rivalrous in the sense of one man’s exploita-

tion exhausting another’s capacity to put the same resource to use, has been 

sought to be distinguished from the world of intangible property where use 

of ideas is non-rivalrous because the originator of the idea is still free to use 

it along with every other person who receives the idea.133 however, in the 

intangible property space, overuse is not the tragedy we worry about. The 

concern is with a different kind of collective action problem: the problem of 

incentives to create the resource in the first place.134 Without an ability to 

exclude others from using products of the intellect, the creator of the idea 

would be unable to charge for the creation. To avoid this problem of inad-

equate incentives to create, the law steps in and creates a limited monopoly 

called an intellectual property right.135

B. Open Source and the Imaginary Tragedy?

To counter this, the open source model is used as a beacon of innovation 

in the absence of monopoly incentives. The argument goes that there are 

diverse rewards, broadly fitting within three categories, namely, monetary, 

intrinsic hedonic, and social-psychological, that motivate people to act in a 

certain way.136 The open source model specifically teaches us that under cer-

tain conditions, the intrinsic hedonic and socio-psychological motivations 

make up for the absence of monopoly incentives to still result in individual 

action that positively enhances these set of motivations over action that is 

131 Garrett hardin, The Tragedy of the Commons, 162 Science 1243, 1244 (1968).
132 Id.
133 Lawrence Lessig, supra note 86, at 22.
134 James Boyle, supra note 130, at 41-42.
135 Id. at 42.
136 yochai Benkler, Coase’s Penguin, Or, Linux And The Nature Of The Firm, 112 yale L.J. 

369, 426-27 (2002).



[2016] FRee AND oPeN SoURCe SoFTWARe AND The TWIN TRAGeDIeS 195

simply monetarily incentivized.137 The sustaining conditions are as impor-

tant as the concept of peer-production. The modularity of the project, being 

its ability to be split up into independent modules that can separately be pur-

sued by interested participants, is important to tap into non-monetary incen-

tives. Similarly, the higher the granularity of the project in question, being 

its ability to be split into smaller sizes, the more likely people are to involve 

themselves in working on those independent modules.138 Independent of 

the minimum granularity of a project, heterogeneity in the size of the mod-

ules may add to its efficiency by allowing contributors with diverse levels of 

motivation to collaborate by contributing modules of different sizes, whose 

production therefore requires different levels of motivation.139 But it is the 

final set of conditions, relating to the integration of contributions by people 

scattered all over, where the commons tragedy comes up as a real threat to 

the continuance of the project.

Before addressing the nuances of peer-based production that averts this 

possible tragedy at the integration stage, it is important to understand the 

sense in which “commons” is used because it is indeed a distinct one from 

the pasture visualized by hardin.140 hardin’s pasture is an unregulated one, 

with untrammeled rights of grazing to every herdsman and his herd. The 

information commons imagined by proponents of the open source model is 

more on the lines of a shared resource pool, with norms and attributes of 

the sharing community facilitating some kind of collective action.141 These 

norms evolve, adapting to changes in technology and communities.142 In this 

framework, the exclusionary right in respect of property only provides one 

side of the story, because access, contribution, extraction, removal, manage-

ment/participation and alienation are all equally important metrics in gaug-

ing the value stakeholders derive from the digital knowledge commons.143 In 

other words, hardin’s pasture involved a binary between exclusion and use, 

while the digital commons introduces the important variable of effective 

governance mechanisms, including social norms and customs, to regulate 

137 Id. at 429.
138 Id. at 435. Conversely, “if the finest-grained contributions are relatively large and 

would require large investment of time and effort, the universe of potential contributors 
decreases.”

139 Id. at 436.
140 Garrett hardin, supra note 131.
141 elinor ostrom & Charlotte hess, A Framework for Analyzing the Knowledge Commons, 

in Understanding Knowledge as a Commons: From Theory to Practice 41, 48-50 
(Charlotte hess & elinor ostrom eds., 2007).

142 Id. at
143 Id. at 52-53.



196 The INDIAN JoURNAL oF LAW AND TeChNoLoGy Vol. 12

use and contribution.144 This distinction has been extended to argue that 

even private property regimes and private corporations, rightly understood, 

are only a “managed commons”, and that a movement toward private prop-

erty is a movement from a ‘commons’ in a physical resource to a ‘commons’ 

in the social structure of individualized resource management.145

Using this framework of a shared resource pool, the open source model 

is put forth as a success story in integrating the contributions of those who 

form a part of the “commons”. This success is largely due to the internet, 

which makes it fairly easy to permit contributions from a large pool of con-

tributors. Apart from increasing the number of eyeballs, this also leads to 

reducing the effects of free riding because the absolute number of contrib-

utors responding to some mix of motivations remains sufficiently large.146 

There is simultaneous acknowledgement though of factors that could upset 

this delicate balance and cause higher defections, leading to ruin of the 

peer-production model. Unilateral appropriation, either through commer-

cialization of the common efforts of all for private benefit or even by super-

imposition of individual values over that of the community, can dangerously 

cause a wedge in the community.147 Mechanisms such as the GPL are tai-

lored precisely to address this concern.148

C. Curbing Flights of Fancy – A Realistic Assessment of 
Open Source

Taking a sharing regime as the starting point, some discourse has emerged 

which critically, and to my mind rightly, examines the illusion of the “com-

mons”.149 The reasoning goes that the success of any sharing regime would 

ultimately hinge on informal reciprocity norms that sustain contribution 

over withdrawal despite the absence of legal norms. Therefore, rationally, 

the cooperation gamble can only be viable when the innovators are repeat 

players with sufficiently low discount rate, and a reputation-based enforce-

ment technology exists that sufficiently rewards compliance with, and 

penalizes violations of, the governing reciprocity norms.150 however, for 

144 yochai Benkler, supra note 136, at 437; Carol Rose, The Comedy of the Commons: 
Custom, Commerce and Inherently Public Property, 53 U. Chi. L. Rev. 711, 742-44 
(1986).

145 Carol Rose, supra note 144, at 746-47; Charlotte hess & elinor ostrom, Ideas, Artifacts, 
And Facilities: Information As A Common-Pool Resource, 66-SPG Law & Contemp. 
Probs. 111, 123 (2003).

146 yochai Benkler, supra note 136, at 438.
147 Id. at 439-40.
148 Id. at 441.
149 Jonathan M. Barnett, The Illusion of the Commons, 25 Berkeley Tech. L.J. 1751 (2010).
150 Id. at 1764-65, 1769.



[2016] FRee AND oPeN SoURCe SoFTWARe AND The TWIN TRAGeDIeS 197

the cooperation to be a lasting and stable proposition, rather than merely a 

viable one, the following features become important: (i) a small group size of 

participants, (ii) low capital investment, (iii) low economic value to the inno-

vative output, and (iv) roughly equivalent innovative endowments, i.e. the 

capacities and talents of innovators.151 of these, the low capital investment 

required to write code is perhaps more important than the others factors, 

when applying this framework to the open source model. This factor clearly 

places the open source model on a footing separate from industries such 

as pharma or telecommunications where the capital investment is higher. 

There is some evidence that suggests failure of the open source paradigm in 

the biotech industry to incentivize innovation, which is consistent with this 

thesis.152 It is also a significant factor to the relative stability of the FoSS 

model that contribution to the open source pool is by coders who are of rel-

atively equivalent talents and capacities. There is also some empirical basis 

to the claim that smaller, close-knit projects have been more successful than 

the ones that claim to tap from the global pool of coders.153 In any event, as 

seen in Part I above, there is significant attempt at cohesion of coder groups 

through dissemination of core values.

But the more fundamental criticism of claims regarding the avoidance of 

a tragic commons can be made simply by revisiting the evolution of FoSS, 

discussed in Part I, sub-part A. This requires us to explore hardin’s com-

mons a little more deeply. hardin does not start off with a tragic commons. 

The pasture is initially one that can accommodate competing uses. It is at 

a certain point, when the factors leading to population decline are brought 

within control, that the pasture feels the pressure of overuse and ultimately 

comes to ruin. In every system, even the most well designed one, there could 

be a certain element of free riding. This metamorphoses into a tragedy 

when the burden of that free riding cannot be borne by the resource any 

more. Viewed this way, the nascent world of software programmers could 

be equated with hardin’s pasture in its early years. The limited commer-

cial significance of software and the spirit of scientific enquiry that guided 

research in this field prior to the ‘80s could accommodate a system of open 

and unfettered appropriation of the source code. By the early ‘80s, software 

was becoming increasingly popular as the technology of the future. The 

possibility of using software to power machines for personal use and to 

solve diverse problems confronting several unconnected industries started 

151 Id. at 1770.
152 Lisa Mandrusiak, Balancing Open Source Paradigms And Traditional Intellectual 

Property Models To Optimize Innovation, 63 Me. L. Rev. 303, 323-24 (2010).
153 Martin Fink, The Business and economics of Linux and open Source 138-57 

(2003).



198 The INDIAN JoURNAL oF LAW AND TeChNoLoGy Vol. 12

lending it huge commercial significance. This could well have been the trig-

ger point when free riding on the code written by others could potentially 

set in motion the chain of events leading to ultimate ruin for all. It is diffi-

cult, however, to conclusively establish this because unlike hardin’s pasture, 

intellectual property rights for software protection already existed though 

by an extension of “literary works” protection in copyright law. Proprietary 

software could well have averted the tragedy of the commons in two signif-

icant ways: one, by denying free riders the ease of copying that they enjoyed 

earlier and thus incentivizing programmers who took software out of the 

confines of academic research labs and scaled it up to business models of 

the future, and two, equally important here, providing a host of intrinsic 

motivations to early day free software coders to develop an alternate model. 

The second point can be established by resort to a simple thought experi-

ment. Let us imagine that software protection was equivalent to hardin’s 

pasture, and that ideas were unprotected. even if source code were to be 

kept confidential, free riders could easily replicate the end product, i.e. the 

machine code, and thus hurtle everyone into eventual ruin. There would be 

nothing unique about Stallman’s clarion call to fellow coders to write free 

software in this already free world. What made Stallman’s call special to 

those who contributed is the possibility of creating an alternate world, one 

where software was free to be redistributed, adapted, modified and self-

taught. A “user community” of project participants in a non-institutional 

setting, a phenomenon uncommon in other areas such as biotechnology or 

the automobile industry,154 was formed as a response mechanism to a private 

property norm. The existing private property regime did something more as 

well. It presented Stallman and FSF with a neat mechanism called GPL to 

propagate their core beliefs and create a community by inversing the exclu-

sionary right. If not for private property in software, Stallman would have 

been unable to do so, and the private appropriation of his code by free riders 

would have destroyed the free software community.

The above analysis was only to serve the limited purpose of showing how 

the FoSS movement, far from being a notable exception to the tragedy of the 

commons, is the product of a system of private property that possibly saved 

the day for innovation in software. This does not in any manner preclude 

the possibility of using open source models of innovation in appropriate 

ventures, under appropriate business conditions.155 That is a separate debate, 

154 Lisa Mandrusiak, supra note 152, at 323.
155 For more on open source innovation in other fields, see Alpheus Bingham & Dwayne 

Spradlin, The open Innovation Marketplace: Creating Value in the Challenge 
Driven enterprise (2011); open Innovation: Researching a New Paradigm (henry 
Chesborough et al. eds., 2006); Jaap Bloem , Menno van Doorn & erik van ommeren, 
open for Business: open Source Inspired Innovation (2007).



[2016] FRee AND oPeN SoURCe SoFTWARe AND The TWIN TRAGeDIeS 199

not within the scope of this paper. It is wrong, however, to assert that the 

open source model reveals why the tragedy of the commons is not a real 

threat. In fact, if there is one thing we can take away from the evolution of 

this model, it is the important role played by private property in the creation 

of this model in the different ways shown above.

IV. AVERTING ANTICOMMONS: AN INVALUABLE 

CONTRIBUTION OF THE FOSS MODEL

A. The Tragedy of the Anticommons

The inability of the open source model to give much policy insight into 

avoiding a tragedy of the commons type situation does not take away its rel-

evance to policy making in a different context and to avoid a different kind 

of problem. This problem – termed the “tragedy of the anticommons” due 

to the inverse character of its formulation in relation to the “tragedy of the 

commons” – was conceptualized by Michael heller pursuant to his study of 

property underuse in post-Soviet era Russia.156 observing the empty Moscow 

storefronts and the bustling street kiosks, heller theorized that the problem 

was with multiple ownership or exclusionary rights in respect of the same 

scarce resource, resulting in lack of consensus on optimal use of the resource 

and a consequential blocking of use by any of the “owners.”157 Thus, while 

the commons tragedy resulted in overuse, the anticommons tragedy led to 

underuse. As a policy prescription to avoid this phenomenon, heller pro-

posed that it was not sufficient to create private property rights but also 

important to focus on placing the entire bundle of rights in one owner.158 If 

necessary, governments ought to redefine and reallocate property rights to 

meet this end, including by way of abolishing or expropriating previously 

granted rights.159 This is because once an anticommons is formed, institu-

tions and interests coalesce around them, giving rise to deviant strategic 

behavior by these beneficiaries to retain the status quo.160 The transaction 

costs for freeing up vexatious anticommons could in fact be much higher 

than those incurred to resolve a commons tragedy.161

156 Michael A. heller, The Tragedy Of The Anticommons: Property In The Transition From 
Marx To Markets, 111 harv. L. Rev. 621 (1998).

157 Id. at 639, 668-69.
158 Id. at 640.
159 Id. at 641.
160 Id. at 659.
161 Francesco Parisi et al., Duality In Property: Commons And Anticommons, 25 Int’l Rev. 

L. & econ. 578, 585-86 (2005).



200 The INDIAN JoURNAL oF LAW AND TeChNoLoGy Vol. 12

Subsequently, heller has applied this notion of anticommons to the study 

of inefficient underuse of intellectual property rights.162 he has also recast 

the anticommons tragedy on a larger canvas, using it to elucidate the prob-

lem of gridlock in free markets.163 A major conceptual critique, perhaps due 

to heller’s fuzzy articulation of the anticommons in an intangible prop-

erty space, has been that every piece of intellectual property is a different 

resource.164 Therefore, the problem is not one of underuse of any particu-

lar resource but a general problem with effective property governance of 

different resources. The conceptual solution to this problem may well lie 

in larger collective action rather than effective bundling, and anticommons 

may, to this extent, obscure the real problem.165 A large part of this cri-

tique stems from failure on heller’s part to accurately rearticulate the anti-

commons problem, at a conceptual level, in the intangible property space. 

Revisiting the commons tragedy in the intangible space would be helpful to 

resolve this conundrum. As we already saw, the commons tragedy in this 

space pertained to the specific problem of under-innovation to create future 

intellectual commodities. If we inverse this, the anticommons problem in 

the intangible property space would be all about over-incentivisation due to 

exclusionary rights over certain types of incremental and basic innovations. 

This would finally lead to a gridlock situation where the room for future 

innovation is severely curtailed by exclusionary rights that cover important 

building blocks for further research and growth. As a necessary corollary, 

success in overcoming the tragedy lies not in bundling these rights over 

incremental innovations but refusing to grant such wide-ranging exclusion-

ary right incentives in the first place.

Some of the instances from intellectual property rights, which heller uses 

to demonstrate the unhappy gridlock effect, make sense once we reartic-

ulate the problem in this conceptual direction of over-incentivisation and 

blocking of optimal property use. For instance, the opening up of upstream 

biomedical research to excessive or uncoordinated creation of private prop-

erty results in over-incentivisation,166 and inability to conduct downstream 

162 Michael A. heller & Rebecca S. eisenberg, Can Patents Deter Innovation? The 
Anticommons in Biomedical Research, 280 Science 698 (1998).

163 Michael heller, The Gridlock economy 2 (2008).
164 David Lametti, The Concept of the Anticommons: Useful, or Ubiquitous and Unnecessary?, 

in Concepts of Property in Intellectual Property Law 232, 243 (helena howe ed., 
2013).

165 Id. at 244.
166 Michael A. heller & Rebecca S. eisenberg, supra note 162, at 698 (“A researcher who 

may have felt entitled to coauthorship or a citation in an earlier era may now feel entitled 
to be a coinventor on a patent or to receive a royalty under a material transfer agreement. 
The result has been a spiral of overlapping patent claims in the hands of different owners, 
reaching ever further upstream in the course of biomedical research.”)



[2016] FRee AND oPeN SoURCe SoFTWARe AND The TWIN TRAGeDIeS 201

medical innovation after a certain point in time.167 This point specifically 

occurs when the transaction costs become high enough to dissuade future 

researchers from licensing with the multiple patent owners who have already 

occupied the field, or the patent applicants whose patents are pending.168 

There is no inevitable underuse of any particular patent in this situation but 

there is still a strong possibility that the existing patents block each other 

out,169 apart from certainly hampering future innovation. Apart from lend-

ing conceptual strength to the clearly unfair instances of gridlock pointed 

out by heller, rearticulating the anticommons problem also compels us to 

acknowledge that not every such instance is truly within the conceptual con-

tours of this problem. For instance, the licensing problem that Google Book 

Search has run into is not a “gridlock” because of the blocking effect of 

anticommons. It is simply a gridlock caused by the overarching reach of 

this project across a wide range of copyrighted material.170 Solutions such as 

collective licensing for radio stations do not again resolve an anticommons 

problem,171 because no one songwriter is anyways blocking another from 

licensing out to a radio station, and no radio station is looking to create a 

new song. This can be contrasted with the truly anticommons gridlock faced 

by the documentary on Martin Luther King, Jr., where existing copyrighted 

works on the same subject effectively blocked the dissemination of a new 

one.172

Regardless, heller’s identification of causative factors leading to an anti-

commons tragedy in the intellectual property space is accurate. he identi-

fies two of them: i) the creation of concurrent fragments of property rights 

over connected innovations in the same field of scientific research, and ii) 

reach-through license agreements that vest rights in the owner of a patented 

invention used in upstream stages of research, over subsequent downstream 

discoveries that rely upon such invention.173 The second factor flows from 

the first in most cases because had the concurrent fragments not been cre-

ated in the first place, the subsequent researcher would not have had to sub-

mit himself to a reach-through license in order to use the fragment as part 

of his research. Both these factors combine to create multiple interests over 

167 Id. at 699.
168 Michael heller, supra note 163, at 50-54.
169 The airplane manufacturing gridlock, where different patent holders threatened to sue 

each other for working their individual patents and thus blocked the manufacture of 
warplanes, is a case in point. eventually, the U.S. Government had to intervene through 
legislation, create a ‘compulsory patent pool’, and free manufacturers from the threat of 
crippling patent litigation. See Id., at 30-31.

170 Id. at 29-30.
171 Id. at 72, 196.
172 Id. at 9-11.
173 Michael A. heller & Rebecca S. eisenberg, supra note 162, at 699.



202 The INDIAN JoURNAL oF LAW AND TeChNoLoGy Vol. 12

connected ideas that can motivate further research and innovation, thereby 

hiking up transaction costs for those who need to make use of all these ideas 

as part of their research and causing potential holdout problems.174

B. The FOSS Model and the Anticommons Story

A possible solution to an anticommons gridlock, emerging from the above 

identification of causative factors, is private action.175 Idealistic as this may 

sound at first glance, such action has been forthcoming in certain situa-

tions from actors responding to this problem purely out of rational self-in-

terest. Property-preempting investments (PPIs), where private firms spend 

significant sums of money to create assets that preempt intellectual property 

rights for strategic reasons, are gaining in popularity in industries such as 

biotechnology and software.176 PPIs work on the premise that once informa-

tion enters the public domain, it cannot be privatized.177 Biotechnology and 

software are two areas where PPIs have been deployed with fair degree of 

success in turning property over to the public domain. In particular, efforts 

such as the Merck Gene Index, a public database of gene sequences corre-

sponding to expressed human genes, created with the contribution of several 

million dollars from Merck, and the Single Nucleotide Polymorphism (SNP) 

consortium to place SNPs, valuable as ‘disease markers’, in public domain 

through the conjoint efforts of private firms and nonprofit research organi-

zations, have thwarted potential anticommons effect in the biotech field.178 

The involvement of private firms, including IBM, in FoSS development, has 

also been explained as an attempt to preclude property rights entanglements 

on a key “input”. Because Linux comes without the threat of leverage and 

dominance that are always present with a proprietary operating system, 

both IBM and its customers can control their own fate and rely on the GPL 

to commit to future or customized versions of Linux without the looming 

threat of high transaction costs.179

This is definitely a significant impact of the FoSS model in facilitating 

a private solution to the anticommons problem. But an even larger contri-

bution of this model in this direction has gone unrecognized. The model 

itself, and not just private investments in the model, has been instrumental 

in averting anticommons tragedy. In Part II, while teasing out the distinction 

174 Id. at 700.
175 Michael heller, supra note 163, at 70-71.
176 Robert P. Merges, A New Dynamism in the Public Domain, 71 U. Chi. L. Rev. 183, 185 

(2004).
177 Id. at 186.
178 Id. at 188-190.
179 Id. at 192-93.



[2016] FRee AND oPeN SoURCe SoFTWARe AND The TWIN TRAGeDIeS 203

between hardin’s pasture and the FoSS world, an important distinguishing 

factor was seen to be the origins of FoSS in a world of proprietary software. 

In other words, the prior existence of legal protection over this “field” made 

it different in its content and character from hardin’s pasture. however, 

there is a conceptual prism using which such “commons”, carved out from 

a larger proprietary field, can be better understood. This is the notion of a 

“constructed commons” that can be used to solve innovation problems.180 In 

this regard, eight clusters have been identified to investigate any particular 

constructed cultural commons, with the eventual goal of relating particular 

characteristics to the results produced by certain types of sharing arrange-

ments.181 These are: i) the relevant history and narrative of the commons;182 ii) 

the entitlement structures and resource provisions that define its contents;183 

iii) the institutional setting and the social practices, disciplines and norms 

that the commons inhabits;184 iv) the formal legal structures put in place to 

facilitate collective action via the commons;185 v) governance mechanisms 

such as membership criteria, resource contribution and appropriation stand-

ards, decision-making rules, provisions for resolving conflicts over member-

ship and resources, and sanctions for violations, that guide the operation of 

the commons;186 vi) the interface between internal governance mechanisms 

(cluster no. v) on the one hand and external mechanisms (cluster nos. ii, iii 

and iv) on the other;187 vii) specific solutions to innovation problems that the 

commons can be associated with;188 and viii) the costs and risks associated 

with the commons.189 The relevance of these clusters is not confined to delin-

eating the contours of any “constructed commons”. It extends to helping 

us distinguish between a “constructed commons” in the true sense of that 

expression, and other PPIs including “defensive publications” that render a 

patent application “anticipated” or at least “obvious”, and thus disentitled 

to patent protection.190

heller recognizes the role of such voluntary arrangements in overcoming 

gridlock, and even mentions open source as one such mechanism along with 

180 Brett M. Frischmann et al., The University As Constructed Cultural Commons, 30 Wash. 
U. J.L. & Pol’y 365, 266 (2009).

181 Id. at 374.
182 Id. at 374-75.
183 Id. at 375.
184 Id.
185 Id. at 375-76.
186 Id. at 376.
187 Id.
188 Id.
189 Id. at 377.
190 See Gideon Parchomovsky, Publish or Perish, 98 Mich. L. Rev. 926 (2000); Douglas 

Lichtman et al., Strategic Disclosure in the Patent System, 53 Vand. L. Rev. 2175 (2000).



204 The INDIAN JoURNAL oF LAW AND TeChNoLoGy Vol. 12

his more explored one of patent pools.191 To truly appreciate the contribu-

tion of FoSS in this direction though, a simple thought experiment, similar 

to the one carried on in Part II while demonstrating proprietary software’s 

contribution in averting a commons tragedy, would suffice. As seen from 

the evolution and practice of programming, most code writing builds on 

existing code and is in that sense, derivative. Now imagine a world where 

Stallman had chosen not to exercise his “good conscience”, not to write his 

legendary forum posting on 27th September, 1988 appealing to the com-

munity of coders,192 and instead, signed the non-disclosure and software 

license agreements that were gradually taking over as the industry norm. 

Apart from its direct practical consequences such as a paid-for Android or 

more expensive server software, this world would have led to a race to create 

multiple proprietary versions of code, each of which could potentially block 

the other out over time. The rationale for this effect can be traced to the 

peculiar character of copyright protection, where the maker of the original 

also enjoys monopoly in respect of derivative works that adapt or modify the 

original. Therefore, those who create the derivative of an already licensed 

derivative work have to go back and take licenses from both the original 

coder and the owner of the first derivative work. Indeed, this would not 

have immediately become a concern because initial developers of derivative 

code could well take licenses from the original coder. Problems in licensing, 

including hike in transaction costs and deleterious blocking effects, would 

surface only once a certain threshold was crossed. This threshold would 

depend on the number of derivative versions in the field and the splintering 

of rights in such versions in the hands of different actors. Soon, the frenzied 

innovation activity in the evolutionary days of software would have dried up 

or become prohibitively expensive. It would not be a stretch of imagination 

to contend that Stallman’s decision to keep the source code open, and more 

important for the purposes of the anticommons tragedy, to nullify private 

property in derivative versions of his code using the GPL mechanism, came 

in at exactly this juncture.

Unfortunately, while conceptualizing “open source”, it has been catego-

rized as a “constructed cultural commons”, which arose as a solution to 

collective action, coordination, or transactions cost problems that existed 

apart from intellectual property rights.193 This is in contrast to other pooling 

arrangements such as the SNP consortium, discussed above, and the pub-

licly available databases of genomic sequences that are part of the human 

191 Michael heller, supra note 163, at 196-97.
192 Richard M. Stallman, supra note 13, at 26-27.
193 Brett M. Frischmann et al., Constructing Commons In The Cultural Environment, 95 

Cornell L. Rev. 657, 691 (2010).



[2016] FRee AND oPeN SoURCe SoFTWARe AND The TWIN TRAGeDIeS 205

Genome Project. These have been categorized as “constructed cultural com-

mons”, which arose as a solution to collective action, coordination, or trans-

actions cost problems that existed because of intellectual property rights.194 

The above bracketing of “open source” within the former category is incor-

rect, and it fits as much into the second category as patent pools. Analysis 

of the FoSS model using the eight clusters for investigating a “constructed 

commons”, mentioned above, makes this amply clear. To do so, let us revisit 

Part I of this paper.

First, as shown in sub-part A of Part I, the evolution of FoSS (cluster no. 

i) was a response to the proprietary norms in intellectual property law gen-

erally, and copyright law and trade secrecy protection in particular (cluster 

no. vii). The major resource for this “constructed commons” (cluster no. 

ii) was the “source code” that would otherwise be kept secret, or rendered 

unusable, because of trade secret and copyright protection respectively. The 

core values of the FoSS movement, discussed in sub-part B of Part II, were 

built around a strong anti-intellectual property rights discourse, and the 

institutional setting of this community (cluster no. iii) can be contrasted 

with that of the proprietary software industry. The GPL licensing mecha-

nism, discussed in the same sub-part, was craftily designed to propagate a 

commons of “free software” that would otherwise be monopolized by resort 

to copyright law and trade secret protection. This also explains the choice 

of copyleft (cluster no. iv) over mere dedication to the public domain. Unlike 

patent law, where such dedication could have preempted the patentability 

and monopolization of an incremental idea by a subsequent innovator, the 

low threshold of ‘originality’ required for copyright protection of derivative 

works in copyright law would have possibly resulted in monopolization of 

incremental derivative works built on works already in the public domain.195 

Apart from this, the institutional structures for internal governance (cluster 

no. v), discussed in sub-part C of Part I, show how different open source 

projects have encouraged decentralized innovation while at the same time, 

brought in mechanisms to control “forking” and uncoordinated innovation 

(cluster no. vi). When viewed in tandem with the different extrinsic and 

intrinsic motivations for participation in open source projects, it is clear that 

the focus has always been on creating an innovation model that serves as an 

alternate paradigm to the “incentive structures” of closed models of innova-

tion built on intellectual property rights (again, cluster no. vii). A major risk 

194 Id. at 692.
195 For more clarity on the low threshold of originality required for independent copyright 

protection for derivative works, see Schrock v. Learning Curve Int’l Inc, 586 F 3d 513 
(7th Cir 2009); L.Batlin & Son, Inc. v. Snyder, 536 F 2d 486 (2d Cir 1976); Durham 
Industries, Inc. v. Tomy Corpn., 630 F 2d 905 (2d Cir 1980).



206 The INDIAN JoURNAL oF LAW AND TeChNoLoGy Vol. 12

associated with the commons (cluster no. viii) is also caused by intellectual 

property rights: the possibility of a private appropriation, rendered stronger 

in the case of more flexible licenses such as Apache and BSD, as shown in 

sub-part B of Part I. For all the above reasons, the FoSS model is indeed a 

“constructed commons” created in response to problems caused by intellec-

tual property rights. And it is one that has, with fair bit of success, averted 

an anticommons problem in the intellectual property space.

V. CONCLUDING REMARKS AND LESSONS FOR INTELLECTUAL 

PROPERTY POLICY

The two substantive arguments made in this paper can be summarized as 

follows: (1) the FoSS model cannot be used to convincingly put forth a case 

against the occurrence of a tragic commons in a world without private prop-

erty; and (2) the FoSS model can, however, be considered a successfully 

constructed cultural commons that has gone a long way toward preventing 

an anticommons problem in the software industry. The policy measures sug-

gested below are suitably tailored to fit within what would naturally follow 

from these arguments. These measures are only guidelines for the direction 

that statutory reform may take, and not an exact articulation of the pro-

posed reform.

The FoSS model shows that the time is ripe for the United States to 

expand its system of moral rights protection beyond visual artistry to 

other fields of creativity and innovation, such that creators are incentivized 

through attribution. Reputational benefit has been a strong motivation for 

coders to participate in FoSS development. Most FoSS licenses guarantee, 

through effective notice mechanism, the dissemination of author informa-

tion. even otherwise, the CVS mechanism and other technical infrastructure 

facilitating FoSS collaboration ensure that the coders who offer program-

ming solutions to complex problems are duly credited for their contribution. 

This is not quite the case with proprietary software. By legislating for a 

strong moral rights protection akin to what exists in europe or even India, 

the United States would be formally recognizing an intrinsic motivation 

that can go a long way in attracting creative contribution to collaborative 

efforts in various fields of innovation. This would also act as an appropriate 

trade-off in settings that involve incremental innovation, as compared with 

the alternate option of incentives through property rules.196 The latter kind 

196 See Guido Calabresi & A. Douglas Melamed, Property Rules, Liability Rules, and 
Inalienability: One View of the Cathedral, 85 harv L Rev 1089 (1972).



[2016] FRee AND oPeN SoURCe SoFTWARe AND The TWIN TRAGeDIeS 207

of incentives can result in economic inefficiency,197 as well as difficulties in 

redistribution of entitlements198 at a certain point when problems, such as 

the anticommons problem for instance, freeze up innovation and necessitate 

such redistribution.

This takes us directly to the issue of property incentives for derivative 

works in copyright law and incremental innovations in patent law. Models 

such as FoSS and patent pools teach us the perils extant in property rules 

that protect incremental innovations. Therefore, a suitable combination of 

liability rules or effective compulsory licensing mechanisms, along with 

the tightening of standards to attract property protection for incremental 

innovations, is essential to avoid a gridlock. First, copyright law must be 

changed to reflect the position that derivative works are entitled to copyright 

protection only if they meet a heightened standard of originality. Similarly, 

patent protection should be denied to new forms of known substances or 

inventions unless they meet certain well-defined and enhanced levels of effi-

cacy. Second, even in such cases, copyright law must necessarily make a 

distinction between pure works of art and fiction, and academic works or 

computer software that are useful for purposes of further modification. In 

the case of the latter, there is a compelling State interest in avoiding a grid-

lock, and the only way in which this interest can be promoted is by either 

replacing property protection against derivative works with liability rules 

against misappropriation, or by retaining property protection but putting in 

place effective mechanisms for compulsory licensing of the works. Similarly, 

patent protection for general purpose technologies199 and upstream research 

tools that can be used to create further products downstream should be 

coupled with an effective compulsory licensing mechanism for such inven-

tions so that a gridlock in future innovation is avoided. Finally, trade secret 

protection must be denied in any situation where the innovator asserts cop-

yright protection in respect of academic works or computer software. The 

innovator must thus be forced to make the trade-off between the benefits of 

non-disclosure and disclosure, in a manner akin to patent protection. only 

this can ensure the avoidance of a gridlock that can otherwise be caused by 

resorting to trade secrecy and non-disclosure agreements.

197 Id. at 1106-07.
198 Id. at 1110.
199 See Boyan Jovanovic & Peter L. Rousseau, General Purpose Technologies, in handbook 

of economic Growth Vol. IB 1182, 1184 (Philippe Aghion & Steven N. Durlauf eds., 
2005).


